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EINSTEIN’S NONPHYSICAL GEOMETRY 
Terence R. Witt 

 
 
Abstract: General relativity is a major driving force in the pursuit of modern cosmology.  
In this paper the author argues that its geometry should not be taken literally as the physical 
representation of space and time. 
 

I. EINSTEIN’S NON-PHYSICAL THEORY 
 
The General Theory of Relativity is lauded not only for its predictive power but also for its 
mathematical eloquence.  The foundation of this theory is the ultimate expression of 
simplicity.  It originates from our inability to experimentally distinguish: 
 

• The simultaneity of two events separated in space. 
 

• The difference between an accelerating observer and the presence of a gravitational 
field. 

 
The complete mathematical rendering of this concept is too involved to present as an 
overview, but a brief description of one of its metrics follows. 
 

DIFFERENTIAL GEOMETRY 
 
The Lorentz transform demonstrates a relationship between measured space and time in 
terms of a single dimension.  The generalization of this concept to three dimensions is: 

 

 

(1) 

where a differential interval of space-time ds has competing components of space and time. 
 
Since space and time are the primary components and our only interest is in radially 
symmetric fields, this can be simplified to: 
 

 
(2) 

Minkowski space is the mathematical formalization of the relativity of simultaneity.  Two 
events in space-time are separated by a certain amount of distance, a certain amount of time, 
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or a combination of both.  They are considered simultaneous if the time difference between 
them is zero (dt = 0).  In this case the space-time distance between them is described strictly 
in terms of space.  This is called the proper distance, and it is equal to: 
 

 

(3) 

Substitution of Equation (2) into this expression with (dt = 0) yields a difference of space: 
 

 
(4) 

The maximum passage of time occurs when there is no change in space.  This is called the 
proper time, and is equal to: 

 

 
(5) 

when (dr = 0).  Proper distance represents two events simultaneous in time; proper time 
represents two events simultaneous in space. 
 
Although time is often interpreted in relativity theory as a fourth dimension external to 
space, the Minkowski metric actually demonstrates this is not true.  If time were truly an 
extension of space then the distance between any two events would have the form: 
 

 
(6) 

where differences in space and time compound and compliment each other.  This is not the 
case.  A difference of time occurs at the expense of a difference in distance, because time is a 
contextual difference of space.  This is consistent with space as an infinite three-dimensional 
volume as derived by Null principles, and is the basis of Equation (2) above: 
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Distance and space-time distance for four events are shown in the figure below: 
 

 

dr

ds 
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B2 dt
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Figure (1) Minkowski space depicts time as a dependent dimension 
 
If two events such as A1 and A2 are close in space, yet distant in space-time, then there is a 
large temporal difference between them.  Conversely, if two events B1 and B2 are about the 
same distance apart in either space or time, then the space-time distance between them is 
quite small even though they may quite remote from each other.  What this means is all 
events along a photon’s path are virtually indistinguishable because the ds interval is zero.  
Minkowski space is a direct reflection of the Null Axiom.  It is yet another way to express 
the interdependence (closure) between the space and time of the universe. 
 

II. THE SCHWARZSCHILD METRIC 
 
The General Theory of Relativity describes how the metric of Equation (2) is distorted in 
the vicinity of massive objects.  Space is typically portrayed as being stretched radially 
toward the center of the field as it is compressed laterally, and time experiences a general 
dilation.  Although there is no brief explanation of the derivation of the equations of General 
relativity, many of their solutions are fairly straightforward.  The simplest is the field around 
a non-rotating spherical object.  It is called the Schwarzschild metric:  
 

 

 

 
(8) 

where ds is a differential unit of length in four-dimensional space-time as presented above 
and θ and φ are polar coordinates in space. 
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This can be further simplified by restricting it to the space-time extending normal to the 
surface of the spherical body (dθ = dφ = 0).  The metric along any radial distance from the 
center of the object is given by: 
 

 

 

(9) 
 

This will be referred to as the radial Schwarzschild metric. 
 
Note this is merely a modified version of the undistorted metric of Equation (2): 
 

 
 

What Equation (9) says is time contracts and distance expands in the presence of a 
gravitational field.  Unlike the radial field equations associated with a particle’s core, 
Equation (9) only relates differential lengths at various positions within a distorted metric.  
There is no absolute metric.  It can, however, be converted into a field of spatial deflection 
for comparative purposes.  The magnitude of spatial distortion in the Schwarzschild metric 
can be isolated by restricting it to a coordinate system simultaneous in time (dt = 0). 
 
Applying this constraint to Equation (9) results in: 
 

 

 

(10) 

Here the only differences between its points are purely spatial.  Applying Equation (3) yields 
a distance metric of the form: 
 

 

 

(11) 
 

The distended length between two radii is the integral of the dL length element: 
 

 

 

 
(12) 
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The change in length per unit length is the slope of the internal deflection distribution along 
space, similar to the external slope of the particle field: 
 

 

 
 
 
 

(13) 

where the term tr will be used to denote a relativistic difference of space along space, and 
will be referred to as relativistic deflection.  In the limit (R2 − R1) → dr this becomes relativistic 
slope: 

 

 

(14) 
 

When r → RS, the Schwarzschild radius of (2GM/c2), slope goes to negative infinity.  When r 
is large in comparison to RS, Equation (14) resolves to: 
 

 

 

(15) 
 

To obtain the magnitude of the deflection of space along space from Equation (15), integrate 
with respect to r: 

 

 

(16) 

where the constant of integration is defined in terms of the logarithm of a radius R{0}. This 
will be called the zero deflection radius, for when r is equal to this radius relativistic deflection 
is equal to zero.  The deflection in this expression is positive as a matter of convention. 
 
Equation (16) demonstrates a curious aspect of General Relativity.  It describes a deflection 
field increasing without bound with distance.  Another way to look at this is in terms of the 
deflection at some radius R relative to infinity: 
 

 

 

(17) 

Since the deflection at infinity does not converge, the actual magnitude of deflection at any 
location in the field is undefined with respect to infinite range.  Unlike the deflections of a 
unit polarvolume field which have a specific value at a given radius, decreasing to zero at 
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infinity, spatial deflections in the General theory do not converge with increasing values of r.  
The presence of a finite mass in space adds an infinite amount of distance between any two infinitely 
remote points in its field. 
 
The following graph shows relativistic deflection from Equation (16) as a function of radius 
in the vicinity of the sun, where zero deflection occurs at its surface: 
 

 
Figure (2) Relativistic deflection as a function of radius 

 
Interior to the sun, deflection is negative and decreases until our condition of (r >> RS,) is 
no longer valid.  Beyond the sun’s surface deflection is positive, increasing with no limit to 
positive infinity.  Choosing different values for R{0} moves the radius of zero deflection, but 
the Schwarzschild metric is non-convergent regardless of the value of R{0}.  Yet this curious property 
isn’t the most compelling reason why the distortion described by the General Theory has no 
correspondence to actual spatial displacement. Relativistic deflection is not an accurate portrayal 
of the physical spatial deflection because it contains no causative agent for its variation with distance. 
 
The General Theory does not contain a single questionable or unreasonable assertion, and it 
results in a spectacularly accurate portrayal of gravitational interaction.  But it also fails to 
show us the source of the fields it describes.  It can never access this information because it is 
isolated from deep reality by its own postulates.  Gravitational phenomena are an indirect 
consequence of the underlying matter field; they do not define this field. 
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